Supplementary Section 1: More comparisons among the R^2s.

To give a comprehensive assessment of the R^2s, this supplement discusses and plots a complete set of simulations, from which a subset was presented in the main text. The different models (LMM, PGLS, GLMM, and PLOG) are presented in turn. In the comparisons for LMMs and GLMMs, I compare the partial R^2s of R^2_{resid}, R^2_{lik} and R^2_{pred} for the fixed effect to $R^2_{\text{glmm(m)}}$ and the partial R^2s for the random effect to $R^2_{\text{glmm(r)}}$. This illustrates the differences between using partial R^2s and marginal R^2s.

Figure Captions

Figure S1: Simulation results for a Linear Mixed Model (LMM) giving R^2_{resid}, R^2_{lik}, R^2_{pred}, R^2_{glmm}, and R^2_{ols} versus the log likelihood ratio (LLR) between full and reduced models. The simulation model (equation 18) contained both a fixed effect β for a continuous variable x and a random effect b for a categorical variable u. For (a), (b) and (c), data were simulated without the random effect ($\beta = 1$, $\sigma = 0$), and for (d), (e) and (f), data were simulated without the fixed effect ($\beta = 0$, $\sigma = 1.5$). Simulations for (g), (h), and (i) contained both fixed and random effects. Columns give different partial R^2s for each method. Specifically, (a), (d), and (g) give the partial R^2s in which the reduced model removes the fixed effect for x: therefore, these give partial R^2s for the fixed effect. Panels (b), (e), and (h) give the partial R^2s in which the reduced model removes the random effect for u: therefore, these give partial R^2s for the random effect. In panels (c), (f) and (i), the reduced model removes both fixed and random effects, giving the total R^2s. Each data set consisted of 100 simulated points, x was simulated as a normal (0, 1) random variable, and u had
10 levels with \(b \) is simulated as a normal \((0, \sigma)\). All analyses were performed with the function `lmer()`.

Figure S2: Simulation results for a Linear Mixed Model (LMM) giving associations between \(R^2_{resid}, R^2_{lik}, R^2_{pred}, R^2_{glmm}, \) and \(R^2_{ols} \). Data are the same as presented in figure S1.

Figure S3: Simulation results for a Linear Mixed Model (LMM) showing means and standard deviations of \(R^2_{resid}, R^2_{lik}, R^2_{pred}, R^2_{glmm}, \) and \(R^2_{ols} \) versus sample size. The simulation model (equation 18) contained both a fixed effect \(\beta \) for a continuous variable \(x \) and a random effect \(b \) for a categorical variable \(u \). For each level of \(u \), from 4 to 16 replicates were simulated. (a), (b), and (c) give means of each \(R^2 \) were calculated for 500 simulations at each sample, and (d), (e), and (f) give standard deviations. Columns give different partial \(R^2 \)s, with (a) and (d) giving the partial \(R^2 \)s for the fixed effect, (b) and (e) giving the partial \(R^2 \)s for the random effect, and (c) and (f) giving the total \(R^2 \)s. In the simulations, \(x \) is simulated as a normal \((0, 1)\) random variable with \(\beta = 1; u \) has 10 levels and \(b \) is simulated as a normal \((0, \sigma = 1.5)\) random variable; and residuals \(e \) are independent \((0, 1)\) random variables. All analyses were performed with the function `lmer()`.

Figure S4: Simulation results for the phylogenetic model with a continuous predictor variable \(x \) giving \(R^2_{resid}, R^2_{lik}, \) and \(R^2_{pred} \) versus the log likelihood ratio (LLR) between full and reduced models. For each simulation, a phylogenetic tree was first simulated, and the values of \(x \) were simulated up the phylogeny assuming Brownian Motion evolution. Data were simulated using equation (18) with \(b = 0 \), and residuals \(e_i \) were simulated from a multivariate normal distribution with mean zero and covariance matrix \(\Sigma(\lambda) = (1 - \lambda)I + \lambda \Sigma_{BM} \). For (a), (b) and (c), data were simulated without phylogenetic signal \((\lambda = 0, \beta = 1)\), and for (d), (e) and (f), data were simulated without the fixed effect \((\lambda = 0.5, \beta = 0)\). Simulations for (g), (h), and (i) contained both fixed and phylogenetic effects \((\beta = 1, \lambda = 0.5)\). (a), (d), and (g) give the partial \(R^2 \)s for the fixed effect. Panels (b), (e), and (h) give the partial \(R^2 \)s for the phylogenetic effect. In panels (c), (f) and (i), the reduced model removes both fixed and phylogenetic effects, giving the total \(R^2 \)s. All analyses were performed with the function `phylolm()`.
Figure S5: Simulation results for a PGLS model giving associations between R^2_{resid}, R^2_{lik}, and R^2_{pred}. Data are the same as presented in figure S3.

Figure S6: Simulation results for the phylogenetic model with a continuous response variable showing means and standard deviations of R^2_{resid}, R^2_{lik}, and R^2_{pred} versus sample size. For each simulation, a phylogenetic tree was first simulated, and the values of the predictor variable x were simulated up the phylogeny assuming Brownian Motion evolution. Residuals e_i were simulated from a multivariate normal distribution with mean zero and covariance matrix $\Sigma(\lambda) = (1 - \lambda)I + \lambda \Sigma_{\text{BM}}$, and the parameter values were $\lambda = 0.5$, $\beta = 1$, and $b = 0$. (a), (b), and (c) give means of each R^2 were calculated for 500 simulations at each sample, and (d), (e), and (f) give standard deviations. Columns give different partial R^2s, with (a) and (d) giving the partial R^2s for x, (b) and (e) giving the partial R^2s for phylogenetic signal λ, and (c) and (f) giving the total R^2s. All analyses were performed with the function phylolm().

Figure S7: Simulation results for a binary Generalized Linear Mixed Model (GLMM) giving R^2_{resid}, R^2_{lik}, R^2_{pred}, R^2_{glmm}, and R^2_{ols} versus the log likelihood ratio (LLR) between full and reduced models. The simulation model (equation 18) contained both a fixed effect β for a continuous variable x and a random effect b for a categorical variable u. The scaling $\sigma^2_{\text{d.rNS}} = 0.8768809 \pi^2/3$ was used for R^2_{resid} (see Appendix 1). For (a), (b) and (c), data were simulated without the random effect ($\beta = 1.8, \sigma = 0$), and for (d), (e) and (f), data were simulated without the fixed effect ($\beta = 0, \sigma = 1.8$). Simulations for (g), (h), and (i) contained both fixed and random effects. (a), (d), and (g) give the partial R^2s for the fixed effect, and panels (b), (e), and (h) give the partial R^2s for the random effect. In panels (c), (f) and (i) give total R^2s. In the simulations, x is simulated as a normal (0, 1) random variable and u has 10 levels and b is simulated as a normal (0, σ). All analyses were performed with the function glmer().

Figure S8: Simulation results for a Generalized Linear Mixed Model (GLMM) giving associations between R^2_{resid}, R^2_{lik}, R^2_{pred}, R^2_{glmm}, and R^2_{ols}. Data are the same as presented in figure S7.
Figure S9: Simulation results for a binary Generalized Linear Mixed Model (GLMM) showing means and standard deviations of R^2_{resid}, R^2_{lik}, R^2_{pred}, R^2_{glmm}, and R^2_{ols} versus sample size. The scaling $\sigma_{d.rNS}^2 = 0.8768809 \pi^2/3$ was used for R^2_{resid} (see Appendix 1). The simulation model (equation 18) contained both a fixed effect β for a continuous variable x and a random effect b for a categorical variable u. For each level of u, from 4 to 16 replicates were simulated. (a), (b), and (c) give means of each R^2 were calculated for 1000 simulations at each sample, and (d), (e), and (f) give standard deviations. Columns give different partial R^2s, with (a) and (d) giving the partial R^2s for the fixed effect, (b) and (e) giving the partial R^2s for the random effect, and (c) and (f) giving the total R^2s. In the simulations, x is simulated as a normal $(0, 1)$ random variable with $\beta = 1.8$ and u has 10 levels and b is simulated as a normal $(0, \sigma = 1.8)$ random variable. All analyses were performed with the function glmer().

Figure S10: Simulation results for the phylogenetic model with a continuous predictor variable x giving R^2_{resid}, R^2_{lik}, and R^2_{pred} versus the log likelihood ratio (LLR) between full and reduced models. The scaling $\sigma_{d.rNS}^2 = 0.8768809 \pi^2/3$ was used for R^2_{resid} (see Appendix 1). For each simulation, a phylogenetic tree was first simulated, and the values of x were simulated up the phylogeny assuming Brownian Motion evolution. Data were simulated using equation (18) with $b = 0$, and residuals e_i were simulated from a multivariate normal distribution with mean zero and covariance matrix $\Sigma(\lambda) = (1 - \lambda)I + \lambda \Sigma_{BM}$. For (a), (b) and (c), data were simulated without phylogenetic signal ($\lambda = 0$, $\beta = 1.5$), and for (d), (e) and (f), data were simulated without the fixed effect ($\lambda = 2$, $\beta = 0$). Simulations for (g), (h), and (i) contained both fixed and phylogenetic effects ($\lambda = 2$, $\beta = 1.5$). (a), (d), and (g) give the partial R^2s for the fixed effect. Panels (b), (e), and (h) give the partial R^2s for the phylogenetic effect. In panels (c), (f) and (i), the reduced model removes both fixed and phylogenetic effects, giving the total R^2s. All analyses were performed with the function phylolm().

Figure S11: Simulation results for a phylogenetic logistic regression model giving associations between R^2_{resid}, R^2_{lik}, and R^2_{pred}. Data are the same as presented in figure S10.

Figure S12: Simulation results for the phylogenetic model with a binary response variable showing means and standard deviations of R^2_{resid}, R^2_{lik}, and R^2_{pred} versus sample size. The scaling
$\sigma_{d.rNS}^2 = 0.8768809 \pi^2/3$ was used for R^2_{resid} (see Appendix 1). For each simulation, a phylogenetic tree was first simulated, and residuals e_i (equation 18) were simulated from a multivariate normal distribution with mean zero and covariance matrix $\Sigma(\lambda) = \lambda \Sigma_{\text{BM}}$. Values of the predictor variable x were assumed to be independently distributed by a $(0,1)$ normal distribution, and the parameter values were $\lambda = 2$, $\beta = 1.5$, and $b = 0$. (a), (b), and (c) give means of each R^2 were calculated for 500 simulations at each sample, and (d), (e), and (f) give standard deviations. Columns give different partial R^2's, with (a) and (d) giving the partial R^2's for x, (b) and (e) giving the partial R^2's for phylogenetic signal λ, and (c) and (f) giving the total R^2's. Calculations of R^2_{lik} were performed with a modified version of the function phyloglm() and the function glm(). Calculations of R^2_{resid} and R^2_{pred} were performed with the function binaryPGLMM().
Fig. S1

Partial R^2 for β_1

Partial R^2 for θ

Total R^2

(d)

Partial R^2 for θ

(f)

Total R^2

(g)

(resid lik pred glmm ols)

(h)

(i)
Fig. S2

\[\beta_1 = 1, \theta = 1.5 \]

\[\beta_1 = 1, \theta = 0 \]

\[\beta_1 = 0, \theta = 1.5 \]
Fig. S3

(a) Partial R^2 for β_1

(b) Partial R^2 for θ

(c) Total R^2

(d) Standardized SD of R^2

(e) Standardized SD of R^2

(f) Standardized SD of R^2
Fig. S4

(a) Partial R^2 for β_1

(b) Partial R^2 for θ

(c) Total R^2

(d) Residuals

(e) Likelihood

(f) Predicted values

(g) Partial R^2 for β_1 vs. LLR

(h) Partial R^2 for θ vs. LLR

(i) Total R^2 vs. LLR
Fig. S5

\[\beta_1=1, \quad \theta=0.5 \]

\[\beta_1=1, \quad \theta=0 \]

\[\beta_1=0, \quad \theta=0.5 \]
Fig. S6

(a) Partial R^2 for β_1

(b) Partial R^2 for θ

(c) Total R^2

(d) Standardized SD R^2

(e) Standardized SD R^2

(f) Standardized SD R^2
Fig. S7

(a) Partial R^2 for β_1

(b) Partial R^2 for θ

(c) Total R^2

(d) R^2

(e) R^2

(f) R^2

(g) R^2

(h) R^2

(i) R^2

Legend:
- x resid
- o lik
- * pred
- △ glmm
- □ ols

θ vs. LLR

β_1 vs. LLR
Fig. S8

$\beta_1 = 1.8, \theta = 1.8$

$\beta_1 = 1.8, \theta = 0$

$\beta_1 = 0, \theta = 1.8$
Fig. S9

Partial R^2 for β_1

- **(a)** Residuals (x), Likelihood (o), Predicted (▲), and GLMM (▲)
- **(b)** Mean R^2 for θ
- **(c)** Total R^2

Partial R^2 for θ

Standardized SD R^2

- **(d)** (e)** (f)** Standardized SD R^2 for different sample sizes.
Fig. S10

Partial R^2 for β_1

Partial R^2 for θ

Total R^2

(d) resid

(e) lik

(f) pred

Residual Likelihood

Total Likelihood

(h) resid

(i) lik

Residual Likelihood

Total Likelihood
Fig. S11

- $\beta_1 = 1.5, \theta = 2$
- $\beta_1 = 1.5, \theta = 0$
- $\beta_1 = 0, \theta = 2$
Fig. S12

Partial R^2 for β_1

Partial R^2 for θ

R^2

Standardized SD R^2

Sample size

Sample size

Sample size
library(lme4)
library(MuMIn)
library(rr2)

inv.logit <- function(x) 1/(1+exp(-x))

find correction factor for s2d that minimizes the difference between logit and Gaussian cumulative distribution functions
optim(par = .85, function(s) {
 x <- .001*(-5000:5000)
 SS <- mean((plogis(x)-pnorm(x, sd=s^.5*pi/3^.5))^2)
 return(SS)
}, method="BFGS")
 # [1] 0.8768809

n <- 1000
p <- 10

d <- data.frame(x=0, y=0, u=rep(1:p, each=n/p))
d$u <- as.factor(d$u)
bl <- 0
sd1 <- 1

nreps <- 100
w <- data.frame(rep=1:nreps)

for(i in 1:nreps){
 d$x <- rnorm(n=n)

 # simulate data from a logit model
 d$prob <- inv.logit(bl * d$x + rep(rnorm(n=p, sd=sd1), each=n/p))

 # simulate data from a probit model
 #d$prob <- pnorm(bl * d$x + rep(rnorm(n=p, sd=sd1), each=n/p))

 d$y <- rbinom(n=n, size=1, prob=d$prob)

 # analyze with a logit link function
 z <- glmer(y ~ 1 + (1|u), data=d, family=binomial)
 X <- model.matrix(z)
 mu <- fitted(z)
 Yhat <- X %*% lme4::fixef(z)
 s2.logit <- VarCorr(z)[[1]][1]
 s2w.logit <- exp(mean(log(1/(mu*(1-mu)))))
 s2d <- pi^2/3
 s2d.r <- 0.8768809 * pi^2/3

 w$s2.logit[i] <- s2.logit
 w$s2w.logit[i] <- s2w.logit
 w$s2d[i] <- s2d
 w$s2d.r[i] <- s2d.r
 w$R2.logit.NS[i] <- 1 - s2d/(var(Yhat) + s2.logit + s2d)
w$R2.logit.rNS[i] <- 1 - s2d.r/(var(Yhat) + s2.logit + s2d.r)
w$R2.logit.deltaNS[i] <- r.squaredGLMM(z)[2,2]
w$R2.logit.w[i] <- 1 - s2w.logit/(var(Yhat) + s2.logit + s2w.logit)

analyze with a probit link function
z.probit <- glmer(y ~ 1 + (1|u), data=d, family=binomial(link="probit"))
mu.probit <- fitted(z.probit)
Yhat.probit <- X %*% lme4::fixef(z.probit)
s2.probit <- VarCorr(z.probit)[[1]][1]
s2w.probit <- exp(mean(log(mu.probit)*(1-mu.probit)/dnorm(qnorm(mu.probit))^2)))

w$s2.probit[i] <- s2.probit
w$s2w.probit[i] <- s2w.probit
w$R2.probit.NS[i] <- 1 - 1/(var(Yhat.probit) + s2.probit + 1)
w$R2.probit.deltaNS[i] <- r.squaredGLMM(z.probit)[2,2]
w$R2.probit.w[i] <- 1 - s2w.probit/(var(Yhat.probit) + s2.probit + s2w.probit)

} # Fig. S1
par(mfrow=c(1,3))
xlim <- c(0,.8)
ylim <- ylim
plot(w$s2.probit, w$s2.logit/w$s2d, xlim=xlim, ylim=ylim, xlab="s2[probit]", ylab="s2[logit]/s2d.NS")
lines(c(0,10),c(0,10), col="red")

plot(w$s2.probit, w$s2.logit/w$s2d.r, xlim=xlim, ylim=ylim, xlab="s2[probit]", ylab="s2[logit]/s2d.rNS")
lines(c(0,10),c(0,10), col="red")
xlim <- c(0,4)
ylim <- ylim
plot(w$s2.probit/w$s2w.probit, w$s2.logit/w$s2w.logit, xlim=xlim, ylim=ylim, xlab="s2[probit]/s2w[probit]", ylab="s2[logit]/s2w[logit]"
lines(c(0,10),c(0,10), col="red")

Fig. S2
par(mfrow=c(2,2))
xlim <- c(0,.45)
ylim <- ylim
plot(w$R2.probit.NS, w$R2.logit.NS, xlim=xlim, ylim=ylim, xlab="R2.NS[probit]", ylab="R2.NS[logit]"
lines(c(0,10),c(0,10), col="red")

plot(w$R2.probit.deltaNS, w$R2.logit.deltaNS, xlim=xlim, ylim=ylim, xlab="R2.deltaNS[probit]", ylab="R2.deltaNS[logit]"
lines(c(0,10),c(0,10), col="red")

plot(w$R2.probit.NS, w$R2.logit.rNS, xlim=xlim, ylim=ylim, xlab="R2.NS[probit]", ylab="R2.rNS[logit]"
lines(c(0,10),c(0,10), col="red")
plot(w$R2.probit.w, w$R2.logit.w, xlim=xlim, ylim=ylim, xlab="R2.w[probit]", ylab="R2.w[logit]")
lines(c(0,10),c(0,10), col="red")